Bankruptcy Problem under Uncertainty of Claims and Estate

Jaroslav Ramík

ramik@opf.slu.cz

Silesian University in Opava School of Business Administration in Karvina Czech Republic

IWoMCDM – 2021

Contents

- Motivation Introduction
- Classical bankruptcy problems and games
- Interval bankruptcy problem
- Fuzzy interval bankruptcy problem
- Illustrating example
- Conclusion

Motivation - Introduction

- Several individuals hold claims on a finite resource - estate and the total amount is not enough to fulfill all of the claims
- Problem: Distribute the resource (Estate) to individual claimants fairly so as to respect individual claims as much as possible

Classical bankruptcy problems (CB) and games

```
CBP - triple (N, c, E):

N = \{1,2,...,n\} – set of claimants

\mathbf{c} = (c_1,c_2,...,c_n) – positive vector of claims c_i, i \in N

E - positive total estate.

Alternatively:
```

(**c**; *E*) generates a cooperative game (*N*; *v*), - bankruptcy game, whose characteristic form is given by

 $v(T) = max\{0, E - \Sigma c_i\}, T \subseteq N - value \text{ of coalition } T$

Interval bankruptcy problem 1

- I(R) set of all closed and bounded intervals on R
- R set of real numbers
- I(R)ⁿ set of all n-dimensional vectors in I(R)
- $I, J \in I(\mathbb{R})$, with $I = [I^-; I^+]$, $J = [J^-; J^+]$ and $k \ge 0$
- Interval operations:

$$I + J = [I + J; I + J^{+}], kI = [kI; kI^{+}]$$

• Partial ordering on $I(\mathbf{R})^n$:

$$1 \le J$$
 if $t \le J$ and $t \le J$

$$I = J$$
, if $I \le J$ and $J \le I$, $I < J$, if $I \le J$ and $I \ne J$

For any $T \subseteq N$, we use the notation:

$$c^{-}(T) = \sum_{i \in T} c_i^{-}, c^{+}(T) = \sum_{i \in T} c_i^{+}$$

Minimal/maximal rights:

$$m_i^-(e) = \max\{c_i^-, e - c^+(N\{i\})\}, m_i^+(e) = \min\{c_i^+, e - c^-(N\{i\})\}$$

Interval bankruptcy problem 2

Definition 1: A bankruptcy rule for an IB-problem (c, E) is a vector mapping $\mathbf{s}: I(\mathbf{R}^+)^{n+1} \to I(\mathbf{R}^+)^n$ where $\mathbf{s}(c, E) = (s_1(c, E), ..., s_n(c, E))$, such that $c = (c_1, ..., c_n) \in I(\mathbf{R}^+)^n$, $c_i = [c_i^-; c_i^+]$, $i \in N$, and $E = [E^-; E^+] \in I(\mathbf{R}^+)$, satisfying

(1)
$$s_i(c, E) = [s_i^-(c, E), s_i^+(c, E)] \subseteq c_i = [c_i^-, c_i^+],$$
 for all $i \in N$, (Individual rationality)

(2)
$$E = [E^-; E^+] \subseteq \sum_{i \in \mathbb{N}} s_i(c, E)$$
 . (Efficiency)

Interval bankruptcy problem 3

Proposition 1: (c,E) - IB-problem. Let $c^-(N) \le E^- \le E^+ \le c^+(N)$. Then $s_i(c,E) = [s_i^-; s_i^+] \in I(\mathbf{R}^+)$ defined for $i \in N$, by

$$s_{i}^{-} = m_{i}^{-}(E^{-}) + [m_{i}^{+}(E^{-}) - m_{i}^{-}(E^{-})] \frac{E^{-} - m_{N}^{-}(E^{-})}{m_{N}^{+}(E^{-}) - m_{N}^{-}(E^{-})}, (*)$$

$$s_{i}^{+} = m_{i}^{-}(E^{+}) + [m_{i}^{+}(E^{+}) - m_{i}^{-}(E^{+})] \frac{E^{+} - m_{N}^{-}(E^{+})}{m_{N}^{+}(E^{+}) - m_{N}^{-}(E^{+})}, (**)$$

is a bankruptcy rule called the *adjusted proportional rule* (AP-rule) for the IB-problem (c,E) satisfying conditions (1), (2).

- Claimants declare their claims with vague words: "about", "around", "rather small", "very big", etc.
- The key issue: how to distribute the uncertain, i.e. interval, fuzzy interval or, eventually, the estate given with some probability, to the individual claimants?
- A fuzzy set A of \mathbf{R} is a fuzzy number (fuzzy interval), whenever A is normal (i.e. there exists x_0 with $\mu_A(x_0) = 1$) and its membership function $\mu_A : \mathbf{R} \to [0;1]$ satisfies that the α -cut $[A]_{\alpha} = \{x \mid \mu_A(x) \ge \alpha\}$ is closed, compact and convex subset of \mathbf{R} for every $\alpha \in [0;1]$.
- Fuzzy number A of \mathbf{R} is equivalent to the family of α -cuts $\{[A]_{\alpha} | \alpha \in [0;1]\}$.

Definition 2: $\tilde{c} = (\tilde{c}_1, ..., \tilde{c}_n) \in F(\mathbf{R}^+)^n$ be a vector of fuzzy numbers:

$$\widetilde{c}_i = [c_i^-(\alpha); c_i^+(\alpha)], i \in N, \widetilde{E} = [E^-(\alpha); E^+(\alpha)] \in F(\mathbb{R}^+)$$

 $\alpha \in [0;1]$ be the families of α -cuts

A bankruptcy rule for an FB-problem (\tilde{c}, \tilde{E}) is a vector mapping \tilde{s} : $F(\mathbf{R}^+)^{n+1} \to F(\mathbf{R}^+)^n$:

$$\left[\widetilde{\boldsymbol{s}}(\widetilde{c},\widetilde{E})\right]_{\alpha} = \left(\left[\widetilde{s}_{1}(\widetilde{c},\widetilde{E})\right]_{\alpha}, \dots, \left[\widetilde{s}_{n}(\widetilde{c},\widetilde{E})\right]_{\alpha}\right)$$

where \tilde{s}_i : $F(\mathbf{R}^+)^{n+1} \to F(\mathbf{R}^+)$, $i \in \mathbb{N}$.

Here, for each $\alpha \in [0;1]$, $[\tilde{s}(\tilde{c}, \tilde{E})]_{\alpha}$ is an IB-problem.

Proposition 2: Let $(\tilde{c}; \tilde{E})$ be a FB-problem. Let

$$\widetilde{E} = \{ [E^{-}(\alpha); E^{+}(\alpha)] | \alpha \in [0;1] \}$$
 and let

$$\sum_{i \in S} c_i^-(\alpha) \le E^-(\alpha) \le E^+(\alpha) \le \sum_{i \in S} c_i^+(\alpha)$$

for all $\alpha \in [0;1]$.

Then for $\alpha \in [0;1]$, $[\tilde{s}(\tilde{c}; \tilde{E})]_{\alpha} = [s_i^-(\alpha); s_i^+(\alpha)] \in I(\mathbb{R}^+)$

is a closed interval defined for $i \in N$, by

$$s_i^-(\alpha) = m_i^-(E^-(\alpha)) + [m_i^+(E^-(\alpha)) - m_i^-(E^-(\alpha))] \frac{E^-(\alpha) - m_N^-(E^-(\alpha))}{m_N^+(E^-(\alpha)) - m_N^-(E^-(\alpha))}, \quad (+)$$

$$s_i^+(\alpha) = m_i^-\left(E^+(\alpha)\right) + \left[m_i^+\left(E^+(\alpha)\right) - m_i^-\left(E^+(\alpha)\right)\right] \frac{E^+(\alpha) - m_N^-(E^+(\alpha))}{m_N^+\left(E^+(\alpha)\right) - m_N^-(E^+(\alpha))} . \tag{++}$$

Family $\{[s_i^-(\alpha); s_i^+(\alpha)] \mid \alpha \in [0;1]\}$, where the α -cuts are defined by (+), (++), defines a bankruptcy rule called the *adjusted fuzzy proportional rule* (AFP-rule) for the FB-problem $(\tilde{c}; \tilde{E})$.

The mean values $s_i^-(\widetilde{E})$, $s_i^+(\widetilde{E})$ give the corresponding interval share $[s_i^-(\widetilde{E}); s_i^+(\widetilde{E})]$ of claimant i:

$$s_{i}^{-}(\widetilde{E}) = \frac{\int_{0}^{1} \alpha s_{i}^{-}(\alpha) d\alpha}{\int_{0}^{1} s_{i}^{-}(\alpha) d\alpha} , \quad s_{i}^{+}(\widetilde{E}) = \frac{\int_{0}^{1} \alpha s_{i}^{+}(\alpha) d\alpha}{\int_{0}^{1} s_{i}^{+}(\alpha) d\alpha}, i \in N. \quad (2)$$

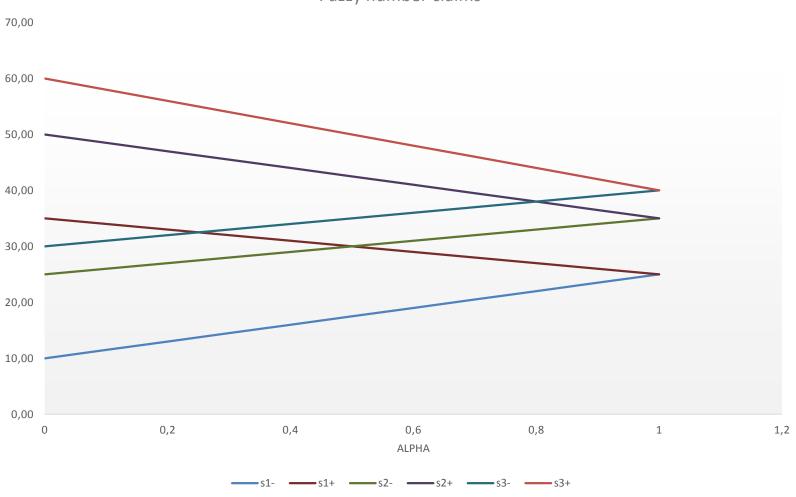
Moreover, $S_i(\widetilde{E})$ is the *crisp* corresponding division share of claimant $i \in N$, defined by

$$S_i(\widetilde{E}) = \frac{s_i^-(\widetilde{E}) + s_i^+(\widetilde{E})}{2}, i \in \mathbb{N}.$$
 (3)

Example: 1

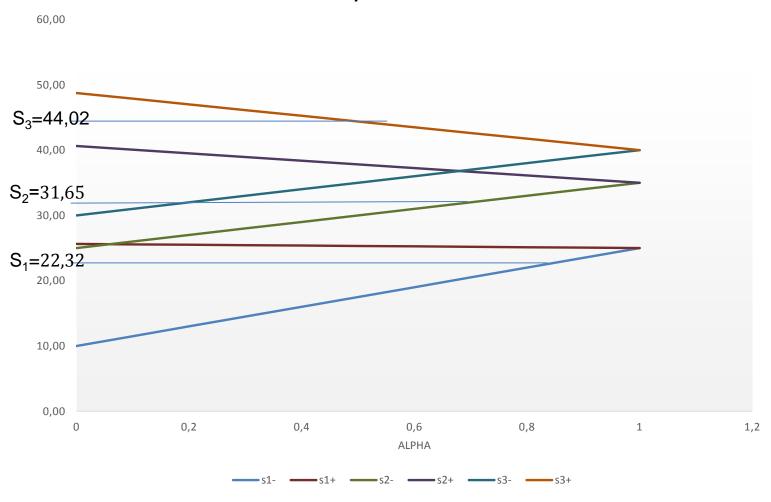
- Let $(\tilde{c}; \tilde{E})$ be a FB-problem as follows. The following claims are expressed as trapezoidal fuzzy intervals (fuzzy numbers):
- $N = \{1,2,3\}, \ \tilde{c} = (\tilde{c}_1, \tilde{c}_2, \tilde{c}_3) \in F(\mathbf{R}^+)^3$, where
- $\tilde{c}_1 = [c_{11}; c_{12}; c_{13}; c_{14}] = [10; 25; 25; 35],$
- $\tilde{c}_2 = [c_{21}; c_{22}; c_{23}; c_{24}] = [25; 35; 35; 50],$
- $\tilde{c}_3 = [c_{31}; c_{32}; c_{33}, c_{34}] = [30; 40; 40; 60].$
- Fuzzy estate is also a trapezoidal fuzzy number
- $\widetilde{E} = [E_1; E_2; E_3; E_4] = [85; 100; 100; 115].$
- For $\alpha \in [0;1]$ the equivalent formulas by α -cuts are as follows
- $\tilde{c}_1 = [10 + 15\alpha; 35 10\alpha], \, \tilde{c}_2 = [25 + 10\alpha; 50 15\alpha],$
- $\tilde{c}_3 = [30 + 10\alpha; 60 20\alpha].$
- $\widetilde{E} = [85 + 15\alpha; 115 15\alpha]$, see Fig. 1.

Example: 2 (Fig. 1)



Example: 3 (Fig. 2)

Fuzzy number shares



Example: 4

- Substituting these values into formulas (2) and (3), we obtain functions $s_i^-(\alpha)$ and $s_i^+(\alpha)$, see Fig. 2. Hence, by these formulas we calculate the integrals of the interval share of each claimant i as
- $[s_1^-(\widetilde{E}); s_1^+(\widetilde{E})] = [19,00; 25,25],$
- $[s_2^-(\widetilde{E}); s_2^+(\widetilde{E})] = [31,00; 37,25],$
- $[s_3^-(\widetilde{E}); s_3^+(\widetilde{E})] = [36,00; 43,50].$
- Moreover, by (3) we obtain the crisp division share of each claimant $i \in N = \{1,2,3\}$, as
- $S_1(\widetilde{E}) = 22,32$; $S_2(\widetilde{E}) = 31,65$; $S_3(\widetilde{E}) = 44,02$.
- The above mentioned division scheme $s(,\widetilde{E})$ is an interval solution of the given FB-problem $(\tilde{c},\widetilde{E})$. Moreover, by the vector of mean values $S(\widetilde{E}) = (22,32,31,65,44,02)$ we obtain a crisp solution of FB-problem $(\tilde{c},\widetilde{E})$.

Conclusion

- When claims of claimants had fuzzy interval uncertainty, we settled such type of division problems by transforming it into division problems under classical interval uncertainty.
- An example was presented to illustrate particular problems and solution concepts. Here, we extended the classical bankruptcy problem (CB-problem), and the corresponding proportional rule (AP-rule) to FB-problem.
- The other classical bankruptcy rules, e.g. contested garment consistent rule (CGC-rule) and recursive completion rule (RC-rule) could be also extended to FBproblem in the future research.

Some references

- BRANZEI, R. et al. (2010). Cooperative interval games: A survey. *Central European J. Oper. Research*, 18, pp. 397–411.
- BRANZEI, R. et al. (2004). How to cope with division problems under interval uncertainty of claims?. Int. J. Uncertain and Fuzziness, 12, pp. 191–200.
- CURIEL, I. J. et al. (1987). Bankruptcy games. Z. Op. Res., 31, pp. A143–A159.
- DUBOIS, D. et al. (1980). Fuzzy sets and systems. Theory and applications. Mathematics in Science and Engineering, 144, Academic Press, New York.
- HABIS, H. et al. (2013). Stochastic bankruptcy games. *Int. J. Game Theory*, 42, pp. 973–988.
- RAMÍK, J. et al. (2004) A non-controversial definition of fuzzy sets. In Transactions on rough sets II Rough sets and fuzzy sets. J.F. Peters, A. Skowron, Eds. Berlin-Heidelberg, Springer Verlag, 2004, 201–207.
- YAGER, R. R. et al. (2000). Fair division under interval uncertainty. *Int. J. Uncertain. Fuzziness*, 8, pp. 611–618.